Users Online: 1393 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 

RSACP wishes to inform that it shall be discontinuing the dispatch of print copy of JOACP to it's Life members. The print copy of JOACP will be posted only to those life members who send us a written confirmation for continuation of print copy.
Kindly email your affirmation for print copies to [email protected] preferably by 30th June 2019.


Table of Contents
Year : 2019  |  Volume : 35  |  Issue : 3  |  Page : 417-420

Commentary: Venous air embolism during hysteroscopy: A stitch in time saves nine!

1 Department of Onco-Anesthesiology and Palliative Medicine, Dr. B.R.A. Institute Rotary Cancer Hospital, AIIMS, New Delhi, India
2 Department of Anesthesiology and Critical Care, Safdarjung Hospital and VMMC, New Delhi, India

Date of Web Publication3-Sep-2019

Correspondence Address:
Dr. Anju Gupta
437 Pocket A, Sarita Viahr, New Delhi - 110 076
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/joacp.JOACP_352_18

Rights and Permissions

How to cite this article:
Gupta N, Gupta A. Commentary: Venous air embolism during hysteroscopy: A stitch in time saves nine!. J Anaesthesiol Clin Pharmacol 2019;35:417-20

How to cite this URL:
Gupta N, Gupta A. Commentary: Venous air embolism during hysteroscopy: A stitch in time saves nine!. J Anaesthesiol Clin Pharmacol [serial online] 2019 [cited 2021 May 17];35:417-20. Available from:

Minimally invasive surgeries are gaining increasing popularity in all surgical fields and have become the method of choice for diagnostic and therapeutic interventions of intrauterine pathology. Advantages consist of short operating time, rapid postoperative recovery, and low morbidity. Nonetheless, female genital tract is particularly vulnerable for air/gas entrainment into its venous plexus. Venous air embolism (VAE) is a rare but potentially lethal/disastrous complication of operative hysteroscopy and was first reported in 1985.[1] The symptoms of VAE range from minor and having no clinical significance to complete cardiovascular collapse during surgery. Cases of VAE may suffer from a very high mortality reaching up to 46%.[2] Incidence of hysteroscopy-related fatal and nonfatal cases of VAE has been variably reported as 10–50% depending on the detection method used.[3],[4] Using transesophageal echocardiography (TEE) in patients undergoing hysteroscopy, Leibowitz et al. could demonstrate the presence of air bubbles in the right heart of 100% of the subjects.[5] It has been proposed that the liver might be acting as a natural bubble filter, making most such events of VAE clinically insignificant. Early detection and intervention are crucial to avert the grave complication of this benign procedure and improve patient outcome, and hence, awareness of the syndrome complex is important.

Venous embolism during diagnostic/operative hysteroscopy can due either to the ingress of either air (atmospheric air) or other gases (insufflating gas such as carbon dioxide or electrosurgical vapors generated during electrothermal procedure). For gas embolism to occur, certain conditions have to be present, open venous channels in contact with gaseous medium, and an operating site above the level of the heart creating a pressure gradient. Opening of large uterine venous channels/false passages created during forceful cervical dilatation for the insertion of the hysteroscope or in cases of uterine trauma exposing circulation to ambient air and other gases along with negative intrathoracic pressure during spontaneous breathing have been proposed as important mechanisms.[1],[2] Improper purging of lines or repeated reinsertion of hysteroscopic instruments are important factors.

The characteristic clinical features include fall in EtCO2, desaturation, “mill wheel” murmur, bradycardia, tachycardia, bronchospasm, respiratory and cardiac arrest, etc.[2] Amount of intravasation of distension fluid has been found to correlate with severity of embolism and VAE is more extensive in patients with intravasation exceeding a liter.[6] TEE is the most sensitive method for detection of VGE and even 0.5 mL of air bubbles can be detected. Patricia et al. recommended the use of continuous EtCO2 monitoring, Doppler ultrasound, and avoidance of N2O in anesthetic gas mixture and air in the irrigation fluid for preventing VAE.[7] Echocardiography is followed in sensitivity by a fall in the EtCO2, increase in pulmonary arterial pressure and central venous pressure, fall in blood pressure, ECG changes, and fall in PaO2.

The argument in favor of air embolism in the present case is as follow:

  1. Patient positioning in lithotomy with Trendelenburg position
  2. Difficult cervical dilatation
  3. Sudden fall in EtCO2, hypotension, bradycardia, desaturation, and ventricular tachycardia on ECG soon after the insertion of the scope
  4. Wide gap between PaCO2 and EtCO2
  5. Normal left ventricular function with dilatation of the right side of the heart and elevated pulmonary arterial pressures.

“Female transurethral resection of the prostate (TURP) syndrome” should be ruled out as a differential diagnosis by noticing any measurable deficit in the input/output of the fluid used for distension, and any signs suggestive of fluid overload.[1] TURP syndrome can occur when electrolyte-free hypotonic distension medium (sorbitol, glycine) are used during hysteroscopy leading to excessive fluid intravasation and hyponatremia. In the present case, isotonic normal saline was used as the distention media which is unlikely to cause hyponatremia and TURP syndrome though the difference in the volume of the returning fluid and the purged fluid has not been mentioned. However, like all distension fluids, it can lead to volume overload in the circulation, as mild pulmonary edema has been reported with infusion of 800 mL fluid under high pressure.[8] Uterine pressures should be monitored and kept below 50–100 mm Hg.[9] Authors of the present case have not reported the uterine distension pressure but fluid overload would not have such catastrophic presentation.

The patient was placed in lithotomy with the Trendelenburg position. Trendelenburg position should be avoided in these procedures to minimize VAE as it can cause negative pressure in the pelvic veins, which facilitates ingress of air into the systemic circulation.[1],[2] The use of nitrous oxide should be avoided as it can increase the volume of entrained air and endotracheal intubation with positive pressure ventilation is preferred.[2],[4],[9] Whether nitrous oxide was used in this case or not is not clear. Hysteroscopy should be performed using mechanical pump with Y connectors and external pressure infusers should be avoided.[2],[4] The American Association of Gynecologic Laparoscopists advocates the use of automated mechanical fluid pump and pressure monitoring system.[10] The hysteromat set should be free of air, irrigation system should have been purged, and all connections should be air tight.[10],[11] A dedicated person should be checking the presence of air bubbles in the fluid infusion system and care should be taken to exclude air while changing the fluids. Repeated re-insertions of hysteroscope are also important in increasing the chances of VAE by causing “piston-like”-forced transmission of pressurized air into the uterus.[12] Cervical priming using misoprostol or Laminaria tents can be useful in such cases with a fixed cervix to reduce the trauma because of its dilatation.[2],[4] Cervical trauma is the usual inciting factor for air embolism in such cases and when difficult cervical dilatation was noted, the patient should have been positioned in the reverse Trendelenburg position to raise the level of heart above the air entrainment site. The presence of air in the pulmonary circulation probably led to severe pulmonary hypertension and elevated pulmonary pressures led to the sequel of right heart failure and pulmonary edema from which the patient could not recover.

Rapid identification and prevention of further gas entrainment into the circulation is crucial to the ultimate patient survival. The surgeon should immediately stop further procedure and deflate the uterus and disconnect sources of fluid and gas. Occlusion of the air entrainment site by using the dilator or wet guazes to pack the vagina is prudent at the first suspicion of air embolism in such cases. A patient should immediately be placed in the reverse Trendelenburg position to raise the level of heart to be placed above the place of air entry, reducing further air entrainment.[13] In case of a symptomatic patient, durant position is an immediate and effective measure to unlock the right ventricular outflow tract of air.[14] Air retrieval using a central venous catheter, or direct needle puncture of the right heart in the case of cardiac arrest, is one of the measures advocated to improve patient's condition. Resuscitative measures in the form of inotropic support and cardiopulmonary resuscitation as necessary should be employed. The suggested surgical and anesthetic measures to prevent or minimize VAE have been summarized in [Table 1] and [Table 2], respectively.[2],[4],[6],[9],[10],[11],[12],[13],[14],[15]
Table 1: Perioperative surgical safety measures in patients undergoing hysteroscopy

Click here to view
Table 2: Safety measures during anesthesia for hysteroscopic procedures

Click here to view

  Conclusion Top

Venous air embolism is a preventable complication and every institute should devise protocols for operation theatre personnel, surgeons and anesthesiologists managing patients undergoing minimally invasive procedures. Immediate termination of the surgical procedure and a vigilant anesthesiologist's timely intervention is crucial in reducing the morbidity and mortality. Educating, raising risk awareness, and training the surgical staff and regular drills should be conducted to effectively manage emergencies.

  References Top

Cooper JM, Brady RM. Intraoperative and early postoperative complications of operative hysteroscopy. Obstet Gynecol Clin North Am 2000;27:347-66.  Back to cited text no. 1
Groenman FA, Peters LW, Rademaker BM, Bakkum EA. Embolism of air and gas in hysteroscopic procedures: Pathophysiology and implication for daily practice. J Minim Invasive Gynecol 2008;15:241-7.  Back to cited text no. 2
Stoloff DR, Isenberg RA, Brill AI. Venous air and gas emboli in operative hysteroscopy. J Am Assoc Gynecol Laparosc 2001;8:181-92.  Back to cited text no. 3
Brandner P, Neis KJ, Ehmer C. The etiology, frequency, and prevention of gas embolism during CO(2) hysteroscopy. J Am Assoc Gynecol Laparosc 1999;6:421-8.  Back to cited text no. 4
Leibowitz D, Benshalom N, Kaganov Y, Rott D, Hurwitz A, Hamani Y. The incidence and haemodynamic significance of gas emboli during operative hysteroscopy: A prospective echocardiographic study. Eur J Echocardiogr 2010;11:429-31.  Back to cited text no. 5
Dyrbye BA, Overdijk LE, van Kesteren PJ, de Haan P, Riezebos RK, Bakkum EA, et al. Gas embolism during hysteroscopic surgery using bipolar or monopolar diathermia: A randomized controlled trial. Am J Obstet Gynecol 2012;207:271.e1-6.  Back to cited text no. 6
Perry PM, Baughman VL. A complication of hysteroscopy: Air embolism. Anesthesiology 1990;73:546-7.  Back to cited text no. 7
Shirk GJ, Gimpelson RJ. Control of intrauterine fluid pressure during operative hysteroscopy. J Am Assoc Gynecol Laparosc 1994;1:229-33.  Back to cited text no. 8
Corson SL, Brooks PG, Soderstrom RM. Gynecologic endoscopic gas embolism. Fertil Steril 1996;65:529-33.  Back to cited text no. 9
American College of Obstetricians and Gynecologists. ACOG technology assessment in obstetrics and gynecology, number 4, August 2005: Hysteroscopy. Obstet Gynecol 2005;106:439-42.  Back to cited text no. 10
Loffer FD, Bradley LD, Brill AI, Brooks PG, Cooper JM. Hysteroscopic fluid monitoring guidelines. The ad hoc committee on hysteroscopic training guidelines of the American Association of Gynecologic Laparoscopists. J Am Assoc Gynecol Laparosc 2000;7:167-8.  Back to cited text no. 11
Brooks PG. Venous air embolism during operative hysteroscopy. J Am Assoc Gynecol Laparosc 1997;4:399-402.  Back to cited text no. 12
Lowenwirt IP, Chi DS, Handwerker SM. Nonfatal venous air embolism during cesarean section: A case report and review of the literature. Obstet Gynecol Surv 1994;49:72-6.  Back to cited text no. 13
Morgan GE, Mikhail MS. Neurophysiology and anesthesia. In: Foltin J, Lebowitz H, Boyle PJ, editors. Clinical Anesthesiology. 2nd ed. Stanford: Appleton and Lange; 1996. p. 477-504.  Back to cited text no. 14
Shveiky D, Rojansky N, Revel A, Benshushan A, Laufer N, Shushan A. Complications of hysteroscopic surgery: “beyond the learning curve”. J Minim Invasive Gynecol 2007;14:218-22.  Back to cited text no. 15


  [Table 1], [Table 2]

This article has been cited by
1 Vascular Air Emboli During the Perioperative Period
Ilana R. Fromer,Balazs Horvath,Richard C. Prielipp,Benjamin Kloesel
Current Anesthesiology Reports. 2020;
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
   Article Tables

 Article Access Statistics
    PDF Downloaded139    
    Comments [Add]    
    Cited by others 1    

Recommend this journal